

Feb 19-8:47 AM

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Nov 28-7:26 AM
find $z_{\alpha / 2}$ for $\alpha=.05$.
$\alpha / 2=.05 / 2=.025 \rightarrow Z_{\text {ion }}^{\text {R }}$ Right-Tail Area
$Z_{.025}=\operatorname{invNorm}(.975,0,1)$
$=1.960$

t - dist.
Graph is bell-shape, symmetric with total area 1.
$\mu=0, \sigma$ is unknown
It comes with degrees of freedom if.
$t_{\alpha / 2}$ is similar to $z_{\alpha / 2}$
we use invT (Left Area, If)

It is usually below inuNorm. If
if You don't have it, Download the Suggested Apps in the Syllabus.

Nov 28-7:37 AM

Nov 28-7:50 AM

Estimating Parameters:

statistic \rightarrow Sample
Parameters \rightarrow Population
we use statistic to estimate Parameters. Estimation of any parameter will be in the form of range of values

Confidence Interval
Estimation of a parameter is in the form of Confidence Interval.
This process comes with Some $\underbrace{\text { le }}_{\text {C-level of Confider }}$
Some Common C-levels are $90 \%, 95 \%, 99 \%$. Confidence level is the middle area of the graph of the Prob. dist. and is $(1-\alpha) \cdot 100 \%$ where $0<\alpha<1$ and it is called significance level.

Nov 28-8:17 AM

Nov 28-8:28 AM

In a Sample of 100 students, 75 of them
had iphone.
$\begin{aligned} & n=100 \\ & x=75\end{aligned} \Rightarrow \hat{p}=\frac{x}{n}=\frac{75}{100}=.75$
with margin of error of $5 \% \rightarrow E=.05$
$\hat{P}-E<P<\widehat{P}+E$
$.75-.05<P<.75+.05$
$.7<p<.8$
we estimate that between 70%, 80% of all students have iPhone.

In a Survey of 400 students, 42% of them were in Support of Tuition-Free College.
$\begin{aligned} n=400 \\ \hat{p}=.42\end{aligned} \Rightarrow \hat{p}=\frac{x}{n} \Rightarrow x=n \hat{p}=400(.42)=168$
with 4% margin of error $\rightarrow E=.04$
$\widehat{P}-E<P<\widehat{P}+E$
$.42-.04<p<.42+.04$
$.38<P<.46$
we estimate that between $38 \%, \dot{\varepsilon} .4 \dot{6}$. of all Students are in favor of tuition-free College:

Nov 28-8:37 AM

$$
\hat{P}-E<P<\hat{P}+E
$$

\hat{p} Sample Proportion, Point-estimate, $\hat{P}=\frac{\chi}{\eta}$

$$
x \rightarrow \# \text { of favorable responces }
$$

$$
\begin{aligned}
& n \rightarrow \text { Sample size } \hat{q}=1-\hat{p} \\
& 7 . \hat{p} \hat{q}
\end{aligned}
$$

$$
E=Z_{\alpha / 2} \cdot \sqrt{\frac{\hat{p} \hat{q}_{j}}{n}} \hat{q}=1-\hat{p}
$$

Critical value for (1-a) 100% C-level.

Nov 28-8:50 AM

In a Survey of 185 students, 32% of them
were in support of online classes.

1) How many of them were in Support of
online classes?
$n=185 \rightarrow x=n \widehat{p}=185(.32)=59.2 \rightarrow x=60$
$\hat{p}=.32 \rightarrow$ If decimal \rightarrow Round-up
$\begin{aligned} & n=185 \\ & \widehat{p}=.32\end{aligned} \rightarrow x=n \widehat{p}=185(.32)=59.2 \rightarrow x=60$. a) Construct Confidence interval for the Prop.
of all students in favor of online classes.

SNO C-level
$.257<p<.392$
\Rightarrow use $.95 \quad 1$-PropzInt $.26<p<.39$
$E=\frac{.392-.257}{2}=\begin{array}{ll}.0675 & \begin{array}{l}x=60 \\ n=185\end{array} \\ \approx=07 & \text { we are } 95 \% \\ \text { confident that }\end{array}$ $\begin{array}{rlrl}\hat{p}=\frac{.392+.257}{2} & =.325 \text { Calculate of all students } \\ & \approx .33 & & \text { are in Support }\end{array}$ of online classes.

I surveyed 580 voters and 135 of them were in Support of certain item on the ballot.
$\begin{aligned} & n=580 \\ & x=135\end{aligned} \rightarrow \hat{p}=\frac{x}{n}=\frac{135}{580}=.233 \rightarrow 23 / 3$
$\hat{q}=1-\hat{p}=.77 \rightarrow 77 \%$
Construct 99% Conf. interval for the prop. of
all voters in support of that item.

Nov 28-9:26 AM

